您的当前位置:首页正文

理论学习的心得体会

2020-11-21 来源:爱站旅游
导读理论学习的心得体会

  读完《小学数学与数学思想方法》这本书,对数学思想方法有了更系统和更全面的认识。知道了什么是数学思想,什么是数学方法,知道了数学思想与数学方法的内在联系与区别。知道数学思想是数学方法进一步提炼和概括,数学思想的抽象概括程度要高一些,而数学方法的操作性更强一些。人们实现数学思想往往要靠一定的数学方法,而人们选择的数学方法,又要以一定的数学思想为依据。由此可见,数学思想方法是数学的灵魂,那么,要想学好数学,用好数学,就要深入到数学的“灵魂深处”。

  数学思想方法如此重要,从这本书中还知道了教师如何进行数学思想方法的教学:

  1、重视思想方法目标的落实。

  教师在备课撰写教学设计时,把数学思想方法作为与知识技能同等地位的目标呈现出来。而不是可有可无或者总是进行渗透,并利用动词进行描述和评价,使数学思想方法的教学目标落到实处。

  2、在知识形成过程中体现数学思想方法。

  现在的数学课堂教学中,很多教师精讲多练,急于把概念、公式、法则等知识传授给学生,然后按照考试的要求进行训练,轻视了知识的形成过程。这样,既浪费了时间,又没有真正培养学生的思维能力、思想方法和学习兴趣,导致很多学生害怕数学。我曾经在讲《除法的初步认识—平均分》时,通过让学生动手操作引导他们经历知识的形成过程。读过这本书才知道自己忽略了数学思想方法的渗透,在这个教学过程中,教师可以引导学生感受从直观操作的具体情境中抽象出除法概念的抽象思想,认识用除法符号表达的具有简洁性的符号化思想,体会用实物、图形帮助理解除法的具有直观性的数形结合思想,知道除法是一种重要的模型思想,体会在除法中商随着被除数、除数的变化而变化的函数思想。当学生认识了除法,在以后的学习中再通过学习有余数的除法、笔算除法等知识逐步加深对除法的理解,会更有利于分数、比、百分数等知识的学习,体会数学本质的变中有不变的思想。

  同样,在计算教学中,如果我们教师只是简单地告诉学生计算法则,让学生停留在对知识的记忆、模仿的水平上,没有真正理解其中的数学方法,即算理,就无法再计算下去了。更谈不上思想方法的提升了。这样的教与学势必将走入一条“死胡同”。培养出来的学生只能是“知识型”、记忆型“的人才,同时,也束缚了”创造型、开拓型“人才的成长。

  所以,在知识形成过程中体现数学思想方法的教学,才算是有效教学。

  3、在知识的应用过程中体现数学思想方法。

  以植树问题为例,可以封闭圆圈植树问题为核心模型,再演变出其他模型。封闭圆圈植树中的点与间隔一一对应,长度÷间隔=棵数。再根据实际情况演变出其他模型:一端栽一端不栽(长度÷间隔=棵数)、两端都栽(长度÷间隔+1=棵数)、两端都不栽(长度÷间隔-1=棵数)。充分发挥模型思想解决问题时的作用。

  4、应在整理和复习、总复习中体现数学思想方法。

  每个单元后的整理和复习、全册书后的总复习,不是简单的复习知识、巩固技能,更是思想方法的总结和提升。当小学生进入六年级,尤其是最后的复习阶段,更应该对小学数学的知识进行系统的、结构化的梳理,在思想方法上进行提升。

  5、知道应潜移默化、明确呈现、长期坚持。

  数学教学,重要的是提高学生的思维品质。数学思想的渗透,应该是长期的,应从小学一年级开始,正如”随风潜入夜,润物细无声“。数学思想方法的教学也应该想春雨一样,不断地滋润学生的心田。

  读完这本书收获很多,对数学思想方法有了系统、全面的认识,在以后的数学思想方法教学中有了可以随时查询的资料,对于数学教学给予了更清晰、明了的指导。

因篇幅问题不能全部显示,请点此查看更多更全内容