中国古代著名的例子“田忌赛马”,通过巧妙的安排部署马匹的出场顺序,利用了现有马匹资源的最大效用,设计出了一个最优的方案,这就是对运筹学中博弈论的运用,那么运筹学与我们的生活息息相关。
自古以来,运筹学就无处不在。小到菜市场买菜的大妈,大到做军事部署的国家元首,都会用到运筹学。当我们为选择去哪里旅游而犹豫不决,比对了很久终于找到一条最优路线时;当我们考试之前想临时抱佛脚,用最短时间复习而考到尽量高的分数时无形之中,我们已经在运用运筹学不断的解决我们生活中的问题了。
运筹学是一应用数学和形式科学的跨领域研究,利用像是统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。而在应用方面,多与仓储、物流、算法等领域相关。因此运筹学与应用数学、工业工程、计算机科学等专业密切相关。
现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。
运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法。“运筹”一词,本指运用算筹,后引伸为谋略之意。“运筹”最早出自于汉高祖刘邦对张良的评价:“运筹帷幄之中,决胜千里之外。”但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。二次大战时,英军首次邀请科学家参与军事行动研究(operations research,在英国又称operational research或OR/MS,management science),战后这些研究结果用于其他用途,这是现代“运筹学”的起源。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。本学期,经过10周的学习,我对运筹学也有了一定的认识和了解,并且能够运用运筹学解决一些实际生活中的问题。经过学习我了解到运筹学的具体内容包括:规划论(包括线性规划、非线性规划、整数规划和动态规划)、库存论、图论、决策论、对策论、排队论、博弈论、可靠性理论等。
一、运筹学的研究方法有:
1、从现实生活场合抽出本质的要素来构造数学模型,因而可寻求一个跟决策者的目标有关的解。
2、探索求解的结构并导出系统的求解过程。
3、从可行方案中寻求系统的最优解法。
二、线性规划:
数学规划的研究对象是计划管理工作中有关安排和估值的问题,解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。它可以表示成求函数在满足约束条件下的极大极小值问题。线性规划及其解法—单纯形法的出现,对运筹学的发展起了重大的推动作用。许多实际问题都可以化成线性规划来解决,而单纯形法有是一个行之有效的算法,加上计算机的出现,使一些大型复杂的实际问题的解决成为现实。
线性规划的某些特殊情况,例如络流、多商品流量等问题,都被认为非常重要,并有大量对其算法的专门研究。很多其他种类的最优化问题算法都可以分拆成线性规划子问题,然后求得解。在历史上,由线性规划引申出的很多概念,启发了最优化理论的核心概念,诸如“对偶”、“分解”、“凸性”的重要性及其一般化等。同样的,在微观经济学和商业管理领域,线性规划被大量应用于解决收入极大化或生产过程的成本极小化之类的问题。
三、动态规划:
对于多阶段决策的最优化问题,动态规划方法属较科学有效的算法。它的基本思想是,把一个比较复杂的问题分解为一系列同类型的更易求解的子问题,便于应用计算机。整个求解过程分为两个阶段,先按整体最优的思想逆序地求出各个子问题中所有可能状态的最优决策与最优路线值,然后再顺序地求出整个问题的最优策略和最优路线。计算过程中,系统地删去了所有中间非最优的方案组合,从而使计算工作量比穷举法大为减少。简单地说,问题能够分解成子问题来解决。
四、步骤:
1、应将实际问题恰当地分割成n个子问题(n个阶段)。通常是根据时间或空间而划分的,或者在经由静态的数学规划模型转换为动态规划模型时,常取静态规划中变量的个数n,即k=n。
2、正确地定义状态变量sk,使它既能正确地描述过程的`状态,又能满足无后效性.动态规划中的状态与一般控制系统中和通常所说的状态的概念是有所不同的。
3、正确地定义决策变量及各阶段的允许决策集合Uk(sk),根据经验,一般将问题中待求的量,选作动态规划模型中的决策变量。或者在把静态规划模型(如线性与非线性规划)转换为动态规划模型时,常取前者的变量xj为后者的决策变量uk。 4、能够正确地写出状态转移方程,至少要能正确反映状态转移规律。
5、根据题意,正确地构造出目标与变量的函数关系——目标函数。
6、写出动态规划函数基本方程。
五、图论:
图论在《离散数学》就有讲过。著名的“柯尼斯堡七桥问题”是图论的源起。此问题被推广为著名的欧拉路问题,亦即一笔画问题。而此论文与范德蒙德的一篇关于骑士周游问题的,则是继承了莱布尼茨提出的“位置分析”的方法。欧拉提出的关于凸多边形顶点数、棱数及面数之间的关系的欧拉公式与图论有密切联系,此后又被柯西等人进一步研究推广,成了拓扑学的起源。1857年,哈密顿发明了“环游世界游戏”(icosian game),与此相关的则是另一个广为人知的图论问题“哈密顿路径问题”。图论是一个古老的但又十分活跃的分支,它是络技术的基础。图论中图是现实中“图”的抽象和概括,它用点表示研究对象,用边表示这些对象之间的联系。通常比较重要的问题是子图相关问题、染色问题、路径问题、络流于匹配问题、覆盖问题等。
六、决策论:
决策论是我自己比较感兴趣的一个章节。决策论是根据信息和评价准则,用数量方法寻找或选取最优决策方案的科学,是运筹学的一个分支和决策分析的理论基础。在实际生活与生产中对同一个问题所面临的几种自然情况或状态,又有几种可选方案,就构成一个决策,而决策者为对付这些情况所取的对策方案就组成决策方案或策略。决策论是一个交叉学科,和数学、统计、经济学、哲学、管理和心理学相关。决策问题根据不同性质通常可以分为确定型、风险型(又称统计型或随机型)和不确定型三种。
七、确定型决策:
是研究环境条件为确定情况下的决策。确定型决策问题通常存在着一个确定的自然状态和决策者希望达到的一个确定目标(收益较大或损失较小),以及可供决策者选择的多个行动方案,并且不同的决策方案可计算出确定的收益值。这种问题可以用数学规划,包括线性规划、非线性规划、动态规划等方法求得最优解。但许多决策问题不一定追求最优解,只要能达到满意解即可。
八、风险型决策:
是研究环境条件不确定,但以某种概率出现的决策。风险型决策问题通常存在着多个可以用概率事先估算出来的自然状态,及决策者的一个确定目标和多个行动方案,并且可以计算出这些方案在不同状态下的收益值。决策准则有期望收益最大准则和期望机会损失最小准则。
九、不确定型决策:
是研究环境条件不确定,可能出现不同的情况(事件),而情况出现的概率也无法估计的决策。这时,在特定情况下的收益是已知的,可以用收益矩阵表示。不确定型决策问题的方法有乐观法、悲观法、乐观系数法、等可能性法和后悔值法等。
因篇幅问题不能全部显示,请点此查看更多更全内容