高耸入云的建筑物,海洋石油钻井平台、人造地球卫星等等,都是人类数学智慧的结晶。接下来我们大家一起了解初三数学点和圆的位置关系教学计划。
(一)创设情境 导入新课
活动一:观察
我国射击运动员在奥运会上获金牌,为我国赢得荣誉,图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?
提示:解决这个问题要研究点和圆的位置关系.
活动二:问题探究
问题1:观察图中点a,点b,点c与圆的位置关系?
点a在圆内,点b在圆上,点c在圆外
问题2:设⊙o半径为r,说出来点a,点b,点c与圆心o的距离与半径的关系:oar
问题3:反过来,已知点到圆心的距离和圆的半径,能否判断点和圆的位置关系?
设⊙o的半径为r,点p到圆心的距离op = d,则有:
点p在圆内d点p在圆上d=r点p在圆外d>r例题讲解 如图所示,已知矩形abcd的边ab=3cm,ad=4cm.
(1)以点a为圆心,4cm为半径作⊙a,则点b、c、d与⊙a的位置关系如何?
(二)合作交流 解读探究
活动三
你知道击中靶上不同位置的成绩是如何计算的吗 ?
射击靶图上,有一组以靶心为圆心的大小不同的圆,他们把靶图由内到外分成几个区域,这些区域用由高到底的环数来表示,射击成绩用弹着点位置对应的环数来表示.弹着点与靶心的距离决定了它在哪个圆内,弹着点离靶心越近,它所在的区域就越靠内,对应的环数也就越高,射击的成绩越好.
活动四:探究
(1)如图,做经过已知点a的圆,这样的圆你能做出多少个?
(2)如图做经过已知点a、b的圆,这样的圆你能做出多少个?他们的圆心分布有什么特点?
思考
经过不在同一条直线上的三点做一个圆,如何确定这个圆的圆心?
分析:如图 三点a、b、c不在同一条直线上,因为所求的圆要经过a、b、c三点,所以圆心到这三点的距离相等,因此这个点要在线段ab的垂直的平分线上,又要在线段bc的垂直的平分线上.
1.分别连接ab、bc、ac
2.分别作出线段ab的垂直平分线l1和l2,设他们的交点为o ,则oa=ob=oc;
3.以点o为圆心,oa(或ob、oc)为半径作圆,便可以作出经过a、b、c的圆.
由于过a、b、c三点的圆的圆心只能是点o,半径等于oa,所以这样的圆只能有一个,即:
结论:不在同一条直线上的三点确定一个圆.
经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,
外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心.
(三)应用迁移 巩固提高
1、判断下列说法是否正确
(1)任意的一个三角形一定有一个外接圆( ).
(2)任意一个圆有且只有一个内接三角形( )
(3)经过三点一定可以确定一个圆( )
(4)三角形的外心到三角形各顶点的距离相等( )
2、如图,已知等边三角形abc中, 边长为6cm,求它的外接圆半径.
3、如图,已知 rt⊿abc 中 ,若 ac=12cm,bc=5cm,求的外接圆半径.
(四)总结反思 拓展升华
总结:1、本节学习的数学知识:(1)点和圆的位置关系;(2)不在同一直至线上的三点确定一个圆。
2、本节学习的数学方法是数形结合
因篇幅问题不能全部显示,请点此查看更多更全内容