一、实训目的
1、进一步熟悉电力电子器件的类型和特性,兵掌握合理选用的原则。
2、学会电力电子电路的安装与调试技能。
3、进一步熟悉电子仪器的正确使用方法。
4、培养学生独立分析问题和解决工程实际问题的能力,并锻炼动手能力。
二、实训内容和要求
1、按电器原理图设计印刷电路板,要求合理布局
2、安装、调试电路板,测试波形、数据。
三、实训主要仪器设备和材料
1、计算机、转印机
2、示波器、万用表
3、覆铜板一块,电子元器件若干
四、实训方法、步骤及结果测试
1、复习有关教材、查找有关资料,了解、熟悉晶闸管触发电路的要求和工作原理。分析电路中个点的电压波形。
2、设计、安装电路板
2、设计、安装电路板
1)用protel软件根据图的同步信号为锯齿波触发电路设计印刷电路板图。要求印刷电路板按照规定尺寸设计,不留空余面积。
一般控制信号从左到右,强电信号从上流到下。~220v不能与印刷电路板连接,~220的阴险要用绝缘胶布牢固扎住。
2)绘制印刷电路板布线线宽要在1mm以上。为了避免干扰,布置地线时候应注意各级电路采用一点接地原则,加粗、缩短地线。
3)所有元件排列均匀,元件引脚、极性正确,布局合理,美观实用。注意变压器的同名端。
4)绘制的印刷电路板图,经审定后,制作印刷电路板。要求印刷电路板钱冲洗干净电路板,不含腐蚀物。钻孔准确,两面无损。
5)对焊接的要求是:净化元件引线和焊点表面,同种元件距离印刷电路板的高度一致,焊接牢固,无虚焊,焊点光亮、圆滑、饱满、无裂纹、大小适中且一致。
3、调试、检测电路
(1)整定移相控制电压uco=0v,偏移电压up=—4v。调斜率电位器rp3,改变锯齿波的上升斜率。使检测点tp7的脉冲前沿落在测检点tp3的锯齿波型中央。以后偏移电位器rp2,斜率电位器rp3不用再调整。
(2)改变移相控制电压uco=0~+8v,脉冲的一项范围d=0°~90°。
(3)用双线示波器观察测检点tp1~tp7在一个工作周期中的波形,测量波形的正负电压值(v),波形的周期(μs。ms),对齐相位,全部记录在下图中。
tp1:滞后市电电压180度;
tp2:波形的最低处为c1充电完毕,最高处是c1放电完毕;
tp3:c1开始充电就开始形成锯齿波,锯齿波的最高点就是c1放完电的时刻;
tp4:最低处为c1开始充电时刻,最高处为c1充电完毕的时刻;
tp5:最高一段是v4截止的时间,最低段为v4导通时间;
tp6:脉冲出现的时刻是v4导通的时刻;
tp7:最低点是脉冲出现的时刻,即是v4导通的时刻。
(4)测绘移相控制特性:用万用表直流电压档测量移相控制电压uco。用示波器观察测检点tp7的脉冲,记录在下表。作出α=f(uco)的移相控制特性的函数曲线。
(5)两板连接测量补脉冲:a、b两块板地线相连,a板补脉冲输出点接b板补脉冲输入点,观察记录b板上g、k两点之间的波形(应有双脉冲输出),判断何为补脉冲。
五、电路工作原理以及印刷电路板布线图
常用的触发电路有正弦波同步触发电路和锯齿波同步触发电路,由于锯齿波同步触发电路具有较好的抗电路干扰、抗电网波动的性能及有较宽的调节范围,因此得到了广泛的应用。该电路由同步检测环节、锯齿波形成环节、同步移相控制环节及脉冲形成与放大环节等组成。
1、同步环节:
同步环节由同步变压器tb、晶体管v2、二极管vd1、vd2、r1、c1等元件组成,在锯齿波触发电路中,同步就是要求锯齿波的频率与主回路电源的频率相同。锯齿波是由起开关作用的v2控制的,v2截止期间产生锯齿波,v2截止持续时间就是锯齿波的宽度,v2开关作用的晶闸管的频率就是锯齿波的频率。要使触发脉冲与主回路电源同步,必须使v2开关的频率与主回路电源频率达到同步。同步变压器和整流变压器接在同一电源上,用同步变压器二次侧电压来控制v2的通断,这就保证了触发脉冲与主回路电源的同步。
2、锯齿波形成环节:锯齿波形成环节由vs、斜率电位器、r3、v1组成的恒流源电路及v2、v3等元件组成,其中v2是交流电源的同步开关,起到同步检测作用。
电路中由晶体管v1组成恒流源向电容c2充电,晶体管v2作为同步开关控制恒流源对c2的充放电过程。晶体管v3为射极跟随器,起阻抗变换和前后级隔离作用,以减小后级对锯齿波线性的影响。
3、移相控制环节
移相控制电压uco、初相位调整电压up(up为负值)和锯齿波ut形成环节产生的锯齿波分别通过r6、r7、r8共同接到v4管的基极上,由三个电压综合后来控制v4的截止与导通。
根据叠加原
理,在分析v4基极电位时,可看成uco、up、锯齿波电压三者单独作用的叠加。只考虑锯齿波电压ut时ut’仍为锯齿波,只是斜率比ut低。同样,只考虑uco和up时,uco’和up’分别为与uco和up平行的一直线,只是数值较uco和up为小。
根据叠加原理,在分析v4基极电位时,可看成uco、up、锯齿波电压三者单独作用的叠加。只考虑锯齿波电压ut时ut’仍为锯齿波,只是斜率比ut低。同样,只考虑uco和up时,uco’和up’分别为与uco和up平行的一直线,只是数值较uco和up为小。
当uco=0时,改变up数值的大小,则v4开始导通的时刻就会根据up的增大或减小而前、后移动,也就是移动了输出脉冲的相位。因此适当调整up数值的大小,可使uco=0时的脉冲初相位满足各主电路的需要。如对于三相可控桥式整流电路,电阻性负载时,脉冲初始相位为120°,而大电感负载时,初始相位为90°。up电压确定后固定不变。改变uco的大小同样可以移动输出脉冲的相位。当uco=0时,输出脉冲相位为α0,uco增大时,输出脉冲相位逐渐前移,即α逐渐减小,从而达到了移相控制的目的。
关于锯齿波的形成和脉冲移相环节的具体分析:
锯齿波电压形成的方案较多,如采用自举式电路、恒流源电路方案,由v1、v2、v3、和c2等元件组成,其中v1、vs、rp2和r3为一恒流源电路。
当v2截止时,恒流源电流i1c对电容c2充电,所以c2两端电压uc按线性增长,即v3的基极电位ub3按线性增长。调节电位器rp2,即改变c2的恒定充电电流i1c,可见rp2是用来调节锯齿波斜率的。
当v2导通时,由于r4阻值很小,所以c2迅速放电,使ub3电位迅速降到零伏附近。当v2周期性地导通和关断时,ub3便形成一锯齿波,同样ue3也是一个锯齿波电压,射极跟随器v3的作用是减少控制回路的电流对锯齿波电压ub3的影响。
v4管的基极电位由锯齿波电压、直流控制电压uc0、直流偏移电压up三个电压作用的叠加值所确定,他们分别通过电阻r6、r7、r8与基极相接其余部分,就是脉冲形成和放大环节以及强触发环节。
v4导通瞬间是脉冲发出的时刻,而v5持续截止时间即为脉冲的宽度,此宽宽与c3的反向充电时间常数r11c3有关。
锯齿波触发电路的特点:
优点:锯齿波同步触发电路不受电网电压波动与波形畸变的直接影响、抗干扰能力强,且移相范围宽。
缺点:该电路相对比较复杂,且整流装置的输出电和控制电压间不满足线性关系。
因篇幅问题不能全部显示,请点此查看更多更全内容