杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!” 这就是老一辈数学家那颗爱国的赤子之心!
(二)“趣味数学题”
小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分。这个游戏对双方公平吗?
转盘1 转盘2
三分之一代表出现奇数的概率:要出现奇数,就必须是两奇数相乘,转盘1就只能出现数字1(概率为二分之一),转盘2就需出现1和3(概率为三分之二 ),所以出现奇数的概率为二分之一乘以三分之二等于三分之一,再乘以2就得到小明的得分情况。
三分之二是出现偶数的概率:有两种情况:①转盘1只要出现数字2(概率为二分之一),不管转盘2出现数字几都会得到偶数,概率为二分之一乘以1等于二分之一 。②转盘1出现数字1(概率二分之一),转盘2出现数字2(概率为三分之一),这种情况概率为二分之一乘以三分之一等于六分之一,把两种情况的概率加起来就是出现偶数的概率为二分之一加六分之一等于三分之二,再乘以1就是小刚的得分情况。
所以这个游戏是公平的。
(三)“数学趣话” 小学数学中的“统计与概率”
随着社会的变迁,统计与人们的生活已经密不可分,生活离不开统计。由于生活已经先于数学课程将统计推到学生面前,在以信息和技术为基础的现代社会,人们面临更多的机会和选择,常常需要在不确定情境中根据大量无组织的数据做出合理的决策。
在小学阶段要培养学生经历收集、处理数据,初步根据数据做出恰当的选择和判断。正是由于统计的重要性,我国首次将“统计观念”作为义务教育阶段数学课程的重要目标之一。
统计学是一门很古老的科学,一般认为其学理研究始于古希腊的亚里斯多德时代,迄今已有两千三百多年的历史。它起源于研究社会经济问题,今天仍然是我们研究社会经济问题的基本方法。在两千多年的发展过程中,统计学至少经历了“城邦政情”、“政治算术”和“统计分析科学”三个发展阶段。概率论是数理统计方法的理论基础,到今天统计学已经有发展成为一个独立学科的趋势,但是还没有达成统一,远在1869年的第七次国际统计会议上,在讨论关于统计学的定义时,据说竟有180余种之多。
现代统计学的理论基础概率论始于研究赌博的机遇问题:在17世纪,法国有一个很有名的赌徒,名字叫默勒。一天,他和侍卫官赌掷筛子,两人都下了30枚金币。约定如果默勒先掷出3次6点,就可以赢得60枚金币,如果侍卫官先掷出3次4点,就可以赢得60枚金币。当默勒掷出2次6点,侍卫官掷出1次4点时,意外的事发生了,侍卫官接到通知,必须马上回去陪国王接见外宾。赌博无法继续了,但是如何分配两人下的赌注呢?默勒认为自己应该获得全部的四分之三,侍卫官认为自己应该获得全部的三分之一。两人争论不休,最后默勒写信询问法国著名数学家帕斯卡,帕斯卡觉得很有意思,于是于1654年7月29日写信给费尔马,和费尔马展开了通信讨论,最终奠定了一门数学分支——概率论。随着长期的研究,逐渐形成了概率论理论框架。
(四)“生活中的数学”
游戏中的数学
一天,熙熙姐姐交给我们一个游戏:两人轮流从1—10按顺序报数,每次只能报1、2或3个数,谁先报到10,谁就赢了。
大家都想将对方“打倒”,但是,怎样才能让自己百分之百的胜利呢?这个问题总在我的脑海中回荡,使我疑惑不解。
回到家,我在小篮子里挑了十个石子,准备新手操作一下。我把爸爸叫来,让爸爸和我一起做这个游戏。我找来一支笔和一本本子,将我做的每一步记录下来。规则是这样的:我和爸爸轮流拿石子,最多拿3个,最少拿1个,谁拿到最后一个,谁就赢了。
第一场我失败了。原来,爸爸先拿,爸爸让我在最短的时间内输的“很惨”;第二场我先拿,我居然赢了„„
我将记录反复看了几遍,终于发现,我用最大的和最小的数相加:即1+3=4,又用了石子总数除以最大数与最小数的和,也就是10÷4=2„2,如果有余数,就我先拿,余数是几就那几个石子,如果没有余数,让对方先拿。现在余数是2,就拿2个石子,剩下的每次拿的石子和对方拿的和是除数3,我就可以必胜了。
为了保证答案的准确性,我又拿了28个石子和爸爸重新玩,有了上面的规律,我果然战无不胜!!!
原来,生活中数学无处不在,它们正等着你去发现呢!
(五)“数学名言”
习惯于从统计规律看问题的人,在思想上不拘执一端,他既认识到一种事物从总的方面看有一定的规律,也承认例外。
——我国著名概率学家陈希孺
在抽象的意义下,一切科学都是数学;在理性的世界里,所有的判断都是统计学。
——著名统计学家C.R.Rao
数学是上帝描述自然的符号。
——黑格尔
因篇幅问题不能全部显示,请点此查看更多更全内容