第1课时加法交换律和结合律
教学目标:
1.在解决实际问题的过程中,发现加法交换律和结合律,学会用字母表示加法交换律和结合律。
2.在探索运算律的过程中,发展学生的分析比较、归纳概括的能力,渗透建模的数学思想,培养学生的符号感。
教学重点:理解并掌握加法交换律、结合律。 教学难点:归纳、概括出加法交换律和结合律。 教学准备:课件 教学过程:
一、谈话引入 1.师生谈话。
同学们,你们喜欢跳绳和踢毽子吗?我们班哪位同学跳绳比较强?谁踢毽子比较强? 学生自由发言。
2.课件出示教材第55页例题1情境图,你能从图中获取哪些数学信息?(学生自由说) 追问:你能根据这些信息,提出哪些用加法计算的问题? (1)跳绳的有多少人? (2)参加活动的女生有多少人? (3)参加活动的一共有多少人? 3.导入新课。
在过去的学习中,我们进行过很多的加法运算,你知道在加法运算里有哪些基本规律吗?今天我们就一起来探索加法中的运算规律。(板书课题)
二、交流共享 1.加法交换律。
(1)提出问题:求跳绳的有多少人,应该怎样列式计算? (2)列式解答。
指名学生回答,教师板书:28+17=45(人) 追问:还可以怎样列式? 教师板书:17+28=45(人) (3)观察发现。
提问:这两道算式都是求什么的人数?结果都是多少?再观察算式,说说它们有何相同点和不同点。
引导学生发现:这两道算式都是求跳绳的总人数,加数相同,得数也一样,只不过是把两个加数的位置调换了一下。
引导:我们可以用什么符号将这两道算式连起来呢?(等号) 师板书:28+17=17+28 (4)照样子写一写。
让学生试写等式,并投影展示。 提问:观察这些等式,你有什么发现? (两个加数交换位置,和不变)
(5)指导学生用自己喜欢的方法表示出这种规律。 学生在各自的练习本上表示规律后,交流各自的表示方法。 (6)用字母表示加法交换律。
明确:如果用字母a、b分别表示两个加数,上面的规律可以写成: a+b=b+a
教师指出:两个数相加,交换两个加数的位置,和不变。这就是加法交换律。(板书:加法交换律)
2.加法结合律。
(1)课件出示问题:跳绳和踢毽子的一共有多少人?
(2)学生独立列式计算。教师巡视,注意不同的解答方法,并指名两人板演不同的方法。 (3)组织汇报交流。
解法一:先算出跳绳的有多少人。 (28+17)+23 =45+23 =68(人)
解法二:先算出女生有多少人。 28+(17+23)
=28+40 =68(人)
提问:这两道算式有什么相同的地方和不同的地方? 学生观察、比较这两个不同算式的计算结果。
追问:这两道算式的结果相同,我们可以把它写成等式吗?怎样写? 根据学生的回答,师板书:(28+17)+23=28+(17+23) (4)加深认识、探索规律。
①课件出示下面两道算式,让学生算一算,判断下面的○里能不能填等号。 (45+25)+16○45+(25+16) (39+18)+22○39+(18+22)
②组织观察:这几组算式有什么共同的地方?有什么不同的地方?你从这些例子中可以发现什么规律?
学生交流得出:这两个算式中,三个加数分别相同,加数的位置也相同;先把前两个数相加,或者先把后两个数相加,和不变。
追问:如果用字母a、b、c分别表示三个加数,这个规律可以怎样表示? 师板书:(a+b)+c=a+(b+c)
小结:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这就是加法结合律。(板书:加法结合律)
三、反馈完善
1.完成教材第56页“练一练”。
让学生说说每个等式各运用了什么运算律及判断的依据。
第三小题既交换了位置,又改变了运算顺序,所以该小题运用了加法交换律和加法结合律。
2.完成教材第58页“练习九”第1、2、3题。
(1)第1题中的最后一小题运用了加法交换律和加法结合律。
(2)第2题是运用加法交换律进行验算,这在过去的计算过程中有学习过,通过这几题的练习加深学生的认识。
(3)第3小题让学生通过计算和观察、比较,进一步认识加法交换律和结合律。 让学生计算,并说说每组中两题的联系。
比较每组中的两题,说说哪一题计算起来更加简便。 四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
因篇幅问题不能全部显示,请点此查看更多更全内容