您的当前位置:首页正文

21圆的基本概念及性质

2023-03-21 来源:爱站旅游
导读21圆的基本概念及性质
圆的有关概念与基本性质

1、(2008庆阳)如图4,AB是O的直径,CD为弦,CD⊥AB于E,则下列结论中不.

成立的是( ) ..

A.COEDOE B.CEDE  BDBCC.OEBE D.A O C E B 图4

D

2、

CDAB于点E,(2008江西)21.如图,AB为O的直径,交O于点D,OFAC于点F.

(1)请写出三条与BC有关的正确结论;

(2)当D30,BC1时,求圆中阴影部分的面积.

C F A

O E D B

答案:21.解:(1)答案不唯一,只要合理均可.例如:

2①BCBD;②OF∥BC;③BCDA;④△BCE∽△OAF;⑤BCBEAB;

⑥BCCEBE;⑦△ABC是直角三角形;⑧△BCD是等腰三角形.················ 3分 (2)连结OC,则OCOAOB.

C F 222D30,AD30,AOC120. ······· 4分 AB为O的直径,ACB90.

在Rt△ABC中,BC1,AB2,AC3. ·········· 5分

A

O E D B

OFAC,AFCF.

OAOB,OF是△ABC的中位线.

11OFBC.

22S△AOC1113ACOF3. ········································································ 6分 22241S扇形AOCOA2. ··································································································· 7分

33S阴影S扇形AOCS△AOC3. ················································································ 8分 34说明:第(1)问每写对一条得1分,共3分.

(2008甘肃白银)高速公路的隧道和桥梁最多.图7是一个隧道的横截面,若它的形状 是以O为圆心的圆的一部分,路面AB=10米,净高CD=7米,则此圆的半径 OA=(D)

A.5 B.7 C.

3737 D. 57(2008甘肃兰州)如图3,已知EF是O的直径,把A为60的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与O交于点P,点B与点O重合.将三角板ABCE 沿OE方向平移,使得点B与点E重合为止.设POFx,则x的取值范围是(A ) B A.30≤x≤60 B.30≤x≤90

E C.30≤x≤120 D.60≤x≤120

(2008甘肃兰州)如图6,在△ABC中,AB10,AC8,BC6,经过点C且与边AB 相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是( D )

C A.42 B.4.75 C.5 D.48 (2008甘肃兰州)如图9,点A,B是O上两点,AB10,点P是O上的动点(P与(B) O P F 图3 A C

F 图6

A A,B不重合)连结AP,PB,过点O分别作OEAP于点E,OFPB于点FA , 则EF .答案:5

O B E

F

P (2008甘肃兰州)如图18,四边形ABCD内接于O,BD是O的直径,AECD,

图9

垂足为E,DA平分BDE. (1)求证:AE是O的切线; A E (2)若DBC30,DE1cm,求BD的长. D 解:(1)证明:连接OA,DA平分BDE,BDAEDA.

B OAOD,ODAOAD.OADEDA.

OA∥CE.

O C 图18

AEDE,AED90,OAEDEA90.

AEOA.

AE是O的切线.

(2)BD是直径,BCDBAD90.

B A E D O C DBC30,BDC60,BDE120. DA平分BDE,BDAEDA60.

ABDEAD30.在

Rt△AED中,

AED90,EAD30,AD2DE.

BD2AD4DE. 在Rt△ABD中,BAD90,ABD30,DE的长是1cm,BD的长是4cm.

(2008甘肃兰州)如图8,在Rt△ABC中,C90,AC3.将其

A B

C

绕B点顺时针旋转一周,则分别以BA,BC为半径的圆形成一圆环. 则该圆环的面积为 .答案:9π 图8 1.(2008齐齐哈尔T7)在半径为5cm的圆中,两条平行弦的长度分别为6cm和8cm,则这两条弦之间的距离为 . 7.1cm或7cm

2. (2008哈尔滨市T14)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,

且CD=l,则弦AB的长是 . 14.6

1.(2008山东济南)如图:点A、B、C都在⊙O上,且点C在弦AB所对的优弧上,

若AOB72,则ACB的度数是( ) A.18° B.30° C.36° D.72° 答案C 2.(2008山东青岛)如图,AB是⊙O的直径,弦CD⊥AB于E,如果AB=10,CD=8,那么AE的长为 . 【参考答案】2

【解析】连结AE,由于AB=10,所以⊙O的半径为5,根据垂径定理:可知DE=

1CD=4,2在Rt△DOE中,∠DEO=90°,OD=5,DE=4,根据勾股定理得:OE=3,则求得的AE=2 如图所示,从垂径定理中可得到下列性质:

COAMDB

(1)有4对全等的直角三角形:Rt△CAD与Rt△CBD;Rt△CAM与Rt△CBM;Rt△OAM与Rt△OBM;Rt△MAD与Rt△MBD;特别在Rt△CAD与Rt△CBD中,直径CD是它们公共的斜边,AM、BM是CD上的高.

(2)有3个等腰三角形;△CAB、△OAB、△DAB.弦AB是它们的公共底边,直径CD是它们的顶角平分线和底边AB的垂直平分线.

BD,CADBC,ADCBD (3)有3对弧相等:AC(4)添加辅助线的方法:连接半径或作垂直于弦的直径(或弦心距),是两种重要的添线方

法.

4.(2008安徽)如图,在O中,ABC50,则AOC等于( ) A.50

A O B.80

C.90

D.100

B

C 答案D

第4题图

8.(2008芜湖)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为( ). A. (45) cm B. 9 cm C. 45cm D. 62cm

答案C

12.(2008芜湖)如图,已知点E是圆O上的点, B、C分别是劣弧AD的三等分点, BOC46,则AED的度数为 . 答案69°

(2008年江苏省无锡市,10T,2分)如图,CDAB于E,若B60,

则A .答案10.30° (第10题)

(2008年江苏省无锡市,12T,2分)已知:如图,边长为a的正△ABC内有一边长为b的内接正△DEF,则△AEF的内切圆半径为 .答案12.

(2008青海)7.如图,O的直径CD过弦AB的中点M,ACD25, 则BOD 度. 答案:50

3(ab) 6(第12题)

A

C

O M B

第7题图

D

(2008宁夏)14.制作一个圆锥模型,已知圆锥底面圆的半径为3.5cm,侧面母线长为6cm,则此圆锥侧面展开图的扇形圆心角为 度.210

(2008宁夏)24.如图,梯形ABCD内接于⊙O, BC∥AD,AC与BD相交于点E ,在不添加任何辅助线的情况下:

(1) 图中共有几对全等三角形,请把它们一一写出来,并选择其中一对全等三角形进行证明. (2) 若BD平分∠ADC,请找出图中与△ABE相似的所有三角形.

解:(1)图中共有三对全等三角形:

DB≌AC②CE ③CB ·①△A△D△ABE≌△D△ABC≌△D······································ 3分

DB≌选择①△A△DAC证明

在⊙O中,∠ABD=∠DCA,∠BCA=∠BDA

CA=∠CAD ∴AD=∠BDA ∵BC∥AD ∴∠B∠C又∵ADAD

DB≌AC ·∴△A△D················································· 5分

(2)图中与△ABE相似的三角形有:

△DCE,△DBA, △ACD. ······························ 8分

(2008年江苏省南通市,22T,8分)已知:如图,M是AB的中点,过点M的弦MN交AB于点C,设⊙O的半径为4cm,MN=43cm. (1)求圆心O到弦MN的距离; (2)求∠ACM的度数.

ACMONB

22.(1)连结OM.∵点M是AB的中点,∴OM⊥AB 过点O作OD⊥MN于点D,

ACMODBN

由垂径定理,得MD=

1MN=23. 2在Rt△ODM中,OM=4,MD=23,∴OD=OM2MD2=2 故圆心O到弦MN的距离为2cm. (2)cos∠OMD=

MD3, OM2∴∠OMD=30°,∴∠ACM=60°

8.(08南京)如图,O是等边三角形ABC的外接圆,O的半径为2, 则等边三角形ABC的边长为( C ) A.3 B.5 C.23

D.25 16.(08南京)如图,有一圆形展厅,在其圆形边缘上的点A处安装了一台监视器,

它的监控角度是65.为了监控整个展厅,最少需在圆形边缘上共安装 ...这样的监视器 3 台.

[2008福建省南平市]21.(9分)如图,线段AB经过圆心O,交O于点A,C,点D在O65 上,连接AD,BD,AB30.BD是O的切线吗?请说明理由. A (第16题)

21.答:BD是O的切线. ······························································································· 2分 理由1:连接OD,OAOD,ADOA30 ·················································· 4分

AB30,BDA180(AB)120 ················································ 7分 BDOBDAADO90即ODBD

BD是O的切线. ····························································· 9分

理由2:连接OD,OAOD,

ADOA30 ······························································ 4分 BODADOA60 ·············································· 7分 B30,

BDO180(BODB)90,即ODBD

BD是O的切线. ··········································································································· 9分

理由3:连接OD,OAOD,ADOA30 ·················································· 4分 在BD的延长线上取一点E,AB30

ADEAB60 ·································································································· 7分 EDOADOADE90,即ODBD

BD是O的切线. ··········································································································· 9分

理由4:连接OD,OAOD,ADOA30 ·················································· 4分 连接CD,则ADC90 ··································································································· 5分

ODCADCADO60 ····················································································· 6分 ODOC,OCD60

B30,BDCOCDB30 ··································································· 7分 ODBODCBDC90,即ODBD

BD是O的切线. ··········································································································· 9分

18.(08泰州)若O为△ABC的外心,且BOC60,则BAC .30或150

23.(08泰州)如图,△ABC内接于O,AD是△ABC的边BC上的高,AE是O的直径,连接BE, △ABE与△ADC相似吗?请证明你的结论.

B O E D C A 第23题图

△ABE与△ADC相似.……………………………………………2分

∵AE是⊙O的直径,∴∠ABE=90°…………………………………… 5分 ∵∠ADC=90°,∴∠ABE=∠ADC.……………………………………… 7分 又∵∠AEB=∠ACD, ∴△ABE∽△ADC …………………………………9分

(滨州市2008)12、如图所示,AB是⊙O的直径,AD=DE,AE与BD交于点C,则图中与∠BCE相等的角有( )

DCAEOB

A、2个 B、3个 C、4个 D、5个 答案:D

(2008深圳)1、如图1,圆柱的左视图是

图1 A B C D 答案:C

(2008广州)2、命题“圆的直径所对的圆周角是直角”是 命题(填“真”或“假”) 答案:真命题 (2008福州市)

14.如图,AB是O的弦,OCAB于点C,若AB8cm,OC3cm,则O的半径为 cm.

A C B O (第14题)

答案5

(2008龙岩市)

9.如图,量角器外沿上有A、B两点,它们的读数分别是70°、

40°,则∠1的度数为 . 答案15°

22.与圆有关的位置关系

° °

O (第9题图)

(济宁市二○○八)16.如图,在△ABC中,A90,BC4cm,

分别以B,C为圆心的两个等圆外切,则图中阴影部 分的面积为 cm.

答案:π

(2008深圳)1、如图2,边长为1的菱形ABCD绕点A旋转,当B、C两点

恰好落在扇形AEF的弧EF上时,弧BC的长度等于

A.答案:C

(2008广州)2、如图9,射线AM交一圆于点B、C,射线AN

2ADF B. C. D. 6432EB图 2C»DE» 交该圆于点D、E,且BC(1)求证:AC=AE

(2)利用尺规作图,分别作线段CE的垂直平分线与∠MCE

的平分线,两线交于点F(保留作图痕迹,不写作法)求证:EF平分∠CEN

图9 答案:(1)作OP⊥AM,OQ⊥AN证APOAQO由BC=CD,得CPEQ得证 (2)同AC=AE得ECMCEN,

由CE=EF得FCEFEC(2008福州市)

19.(本题满分11分)

11MCECEN得证 22DAB22.5,如图,AB是O的直径,AD是弦,延长AB到点C,使得ACD45.

(1)求证:CD是O的切线; (2)若AB22,求BC的长.

答案19.(1)证法一:如图,连接OD.

DAB22.5,DOC2DAB,

因篇幅问题不能全部显示,请点此查看更多更全内容