六年级数学奥数讲义练习第33讲行程问题(一)(全国通用
版,含答案)
一、知识要点
行程问题的三个基本量是距离、速度和时间。其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。它大致分为以下三种情况: (1)相向而行:相遇时间=距离÷速度和 (2)相背而行:相背距离=速度和×时间。 (3)同向而行:速度慢的在前,快的在后。 追及时间=追及距离÷速度差
在环形跑道上,速度快的在前,慢的在后。 追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
二、精讲精练
【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。甲车行完全程用了多少小时?
解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。这句话的实质就是:“乙48分钟行了24千米”。可以先求乙的速度,然后根据路程求时间。也可以先求出全程165千米是24千米的多少
1 / 8
倍,再求甲行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/小时) 甲行完全程的时间:165÷30—
48
=4.7(小时) 60
解法二:48×(165÷24)—48=282(分钟)=4.7(小时) 答:甲车行完全程用了4.7小时。 练习1:
1、甲、乙两地之间的距离是420千米。两辆汽车同时从甲地开往乙地。第一辆每小时行42千米,第二辆汽车每小时行28千米。第一辆汽车到乙地立即返回。两辆汽车从开出到相遇共用多少小时?
2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。两车同时从两地开出,相遇时甲车距B地还有多少千米?
3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。到10点钟时两车相距112.5千米。继续行进到下午1时,两车相距还是112.5千米。A、B两地间的距离是多少千米?
【例题2】两辆汽车同时从东、西两站相向开出。第一次在离东站60千米的地方相遇。之后,两车继续以原来的速度前进。各自到达对方车站后都立即返回,又在距中点西侧30千米处相遇。两站相距多少千米?
2 / 8
东西图33—1
从两辆汽车同时从东、西两站相对开出到第二次相遇共行了三个全程。两辆汽车行一个全程时,从东站出发的汽车行了60千米,两车走三个全程时,这辆汽车走了3个60千米。这时这辆汽车距中点30千米,也就是说这辆汽车再行30千米的话,共行的路程相当于东、西两站路程的1.5倍。找到这个关系,东、西两这站之间的距离也就可以求出来了。所以
(60×3+30)÷1.5=140(千米) 答:东、西两站相距140千米。 练习2:
1、两辆汽车同时从南、北两站相对开出,第一次在离南站55千米的地方相遇,之后两车继续以原来的速度前进。各自到站后都立即返回,又在距中点南侧15千米处相遇。两站相距多少千米?
2、两列火车同时从甲、乙两站相向而行。第一次相遇在离甲站40千米的地方。两车仍以原速继续前进。各自到站后立即返回,又在离乙站20千米的地方相遇。两站相距多少千米?
3、甲、乙两辆汽车同时从A、B两地相对开出。第一次相遇时离A站有90千米。然后各按原速继续行驶,分别到达对方车站后立即沿原路返回。第二次相遇时在离A地的距离占A、B两站间全程的65%。A、B两站间的路程是多少千米?
3 / 8
【例题3】A、B两地相距960米。甲、乙两人分别从A、B两地同时出发。若相向而行,6分钟相遇;若同向行走,80分钟甲可以追上乙。甲从A地走到B地要用多少分钟?
甲、乙两人从同时同向出发到相遇,6分钟共行的路程是960米,那么每分钟共行的路程(速度和)是960÷6=160(米);甲、乙两人从同时同向出发到甲追上乙需用去80分钟,甲追乙的路程是960米,每分钟甲追乙的路程(速度差)是960÷80=12(米)。根据甲、乙速度和与差,可知甲每分钟行(160+12)÷1=86(米)。甲从A地到B地要用960÷86=11
7
(分钟),列算式为 43
960÷[(960÷6+960÷80)÷2]=11
7
(分钟) 43
答:甲从A地走到B地要用11练习3:
7
分钟。 43
1、一条笔直的马路通过A、B两地,甲、乙两人同时从A、B两地出发,若先跟乡行走,12分钟相遇;若同向行走,8分钟甲就落在乙后面1864米。已知A、B两地相距1800米。甲、乙每分钟各行多少米?
2、父子二人在一400米长的环行跑道上散步。他俩同时从同一地点出发。62
若想8背而行,2 分钟相遇;若同向而行,26 分钟父亲可以追上儿子。问:在
73跑道上走一圈,父子各需多少分钟?
3、两条公路呈十字交叉。甲从十字路口南1350米处向北直行,乙从十字路口处向东直行。同时出发10分钟后,二人离使字路口的距离相等;二人仍保持原来速度直行,又过了80分钟,这时二人离十字路口的距离又相等。求甲、乙二人
4 / 8
的速度。
【例题4】上午8时8分,小明骑自行车从家里出发。8分钟后每爸爸骑摩托车去追他。在离家4千米的地方追上了他,然后爸爸立即回家。到家后他又立即回头去追小明。再追上他的时候,离家恰好是8千米(如图33-2所示),这时是几时几分?
4千米小明8:08出发4千米爸爸8:16出发图33—2
由题意可知:爸爸第一次追上小明后,立即回家,到家后又回头去追小名,再1
追上小明时走了12千米。可见小明的速度是爸爸的速度的 。那么,小明先走8
3分钟后,爸爸只花了4分钟即可追上,这段时间爸爸走了4千米。列式为
爸爸的速度是小明的几倍:(4+8)÷4=3(倍) 爸爸走4千米所需的时间:8÷(3—1)=4(分钟) 爸爸的速度:4÷4=1(千米/分)
爸爸所用的时间:(4+4+8)÷1=16(分钟) 16+16=32(分钟) 答:这时是8时32分。 练习4:
1、A、B两地相距21千米,上午8时甲、乙分别从A、B两地出发,相向而行。甲到达B地后立即返回,乙到达A地后立即返回。上午10时他们第二次相遇。此
5 / 8
时,甲走的路程比乙走的多9千米,甲一共行了多少千米?甲每小时走多少千米?
2、张师傅上班坐车,回家步行,路上一共要用80分钟。如果往、返都坐车,全部行程要50千米;如果往、返都步行,全部行程要多长时间?
3、当甲在60米赛跑中冲过终点线时,比乙领先10米,比丙领先20米。如果乙和丙按原来的速度继续冲向终点,那么乙到达终点时将比丙领先多少米?
【例题5】甲、乙、丙三人,每分钟分别行68米、70.5米、72米。现甲、乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙和乙相遇后,又过2分钟与甲相遇。东、西两镇相距多少器秒年米毫?
乙、丙相遇点东甲、丙相遇点? 米图33——3西
如图33-3所示,可以看出,乙、丙两人相遇时,乙比甲多行的路程正好是后来甲、丙2分钟所行的路程和,是(68+72)×2=280(米)。而每分钟乙比甲多行70.5—68=2.5(米)可见,乙、丙相遇时间是280÷2.5=112(分钟),因此,求东、西两镇间的距离可用速度和乘以相遇时间求出。列式为
乙、丙相遇时间:(68+72)×2÷2.5=112(分钟)
东、西两镇相距的千米数:(70.5+72)×112÷1000=15.96(千米) 练习5:
6 / 8
1、有甲、乙、丙三人,甲每分钟行70米,乙每分钟行60米,丙每分钟行75米,甲、乙从A地去B地,丙从B地去A地,三人同时出发,丙遇到甲8分钟后,再遇到乙。A、B两地相距多少千米?
2、一只狼以每秒15米的速度追捕在它前面100米处的兔子。兔子每秒行4.5米,6秒钟后猎人向狼开了一枪。狼立即转身以每秒16.5米的速度背向兔子逃去。问:开枪多少秒后兔子与狼又相距100米?
3、甲、乙两车同时从A地开往B地,乙车6小时可以到达,甲车每小时比乙车慢8千米,因此比乙车迟一小时到达。A、B两地间的路程是多少千米?
答案 练1
1、420×2÷(42+28)=12小时
2、900÷15×【15-900÷(900÷15+900÷10)】=540千米 3、甲、乙两车的速度和:112.5×2÷(13-10)=75千米 A-B两地的距离:75×(10-8)+112.5=262.5千米 练2
1、(55×3-15)÷1.5=100千米 2、40×3-20=100千米
3、90×3-(1+1-65%)=200千米 练3
1、【1800÷12-(1864-1800)÷8】÷2=71米 【1800÷12+(1864-1800)÷8】÷2=79米
7 / 8
67
23
53125
2、400÷【(400÷2 +400÷26 )÷2】=5 分 400÷【(400÷2 -400÷26 )÷2】=6 分 3、速度和:1350÷10=135米/分 速度差:1350÷(10+80)=15米/分 甲速:(135+15)÷2=75米/分 乙速:(135-15)÷2=60米/分 练4
1、甲行路程:(21×3+9)÷2=36千米 甲速:36÷2=18千米 2、(80-50÷2)×2=110分 3、丙的行程:60×
60-20
=48米 60-1067
23
乙到达重点将比丙领先的米数:60-48=12米 练5
1、(70+75)×【(75+60)×8÷(70-60)】÷1000=15.66千米 2、(15-4.5)×6÷(16.5+4.5)=3秒 3、8×6×(6+1)=336千米
8 / 8
因篇幅问题不能全部显示,请点此查看更多更全内容