您的当前位置:首页正文

初中的数学几何所有性质和定理

2022-02-17 来源:爱站旅游
导读初中的数学几何所有性质和定理


初中数学几何所有性质和定理

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d wc呁/S∕??

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94 判定定理3 三边对应成比例,两三角形相似(SSS)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线

109定理 不在同一直线上的三点确定一个圆。

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也

相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

121①直线L和⊙O相交 d<r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r ?

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>R+r ②两圆外切 d=R+r

③两圆相交 R-r<d<R+r(R>r)

④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)

136定理 相交两圆的连心线垂直平分两圆的公*弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积Sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长扑愎剑篖=n兀R/180

145扇形面积公式:S扇形=n兀R^2/360=LR/2

146内公切线长= d-(R-r) 外公切线长= d-(R+r)

(还有一些,大家帮补充吧)

实用工具:常用数学公式

公式分类 公式表达式

乘法与因式分解

a^2-b^2=(a+b)(a-b)

a^3+b^3=(a+b)(a^2-ab+b^2) •

a^3-b^3=(a-b(a^2+ab+b^2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式

b^2-4ac=0 注:方程有两个相等的实根

b^2-4ac>0 注:方程有两个不等的实根

b^2-4ac<0 注:方程没有实根,有*轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B) )

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2 ?

2+4+6+8+10+12+14+…+(2n)=n(n+1) 5

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标

圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0

抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s*h 圆柱体 V=pi*r2h

初中常用的几何辅助线做法

辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

中考数学第一轮梳理——数学不等于做题

一、应掌握的知识结构与复习要点

第一轮的知识梳理,应从基础知识、基本概念入手。

第一轮摸清初中数学内容的脉络,开展基础知识系统复习,按初中数学的知识体系,可以把二十一章内容归纳成八个单元。

1.数与式{实数、整式、分式、二次根式}

2.方程(组)与不等式(组){一次方程(组)、一元一次不等式(组)、一元二次方程、分式方程,简单二元二次方程(组)}

3.函数与统计{一次函数、二次函数、反比例函数、统计}

4.三角形

5.四边形

6.相似形

7.解直角三角形

8.圆

二、学习方法与学习习惯

今年第一轮复习梳理就从教科书开始。看透书,正确理解,全面把握基础知识。对书上醒目的黑体字,简捷精辟的定理读懂看透,通过对教材内容的掌握和理解。在梳理形成一个清晰的知识点框架从而去准确灵活运用这些基本概念定理去解题证明,达到好的效果。书看的效果如何,只要看书的边缘是不是翻的变颜色了,变深变黑了,书不再崭新的,就可以。这第一步目的就达到了。

归纳和梳理教材知识点,记清概念,基础夯实。数学不等于做题,千万不要忽视最基本的概念、公理、定理、和公式的记忆。特别是选择题,要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。因此,要把教材中的概念整理出来,列出各单元的复习提纲。通过读一读、抄一抄、记一记等方法加深印象,对容易混淆的概念要彻底搞清、不留后患。

不要把大量的时间放在解偏题难题上。偏题难题有着优势的一面,提高学生的解题技巧,增加多种解题思路。但却往往偏离了大纲的要求。偏难题让学生没有自信,思维是越走越偏,远离教材知识点往往是浪费时间,收效不高。

中考复习应得法,应扎实有效,每个人都有自己的独特的学习方法,坚持自己的学习方法才是成功的秘诀

如何做好数学课堂笔记?

听课时,我们应该如何做笔记?值得我们思考。

学习数学做好课堂笔记至关重要,那么如何做数学课堂笔记呢?

一、记提纲

老师讲课大多有提纲,并且讲课时老师会将备课提纲书写在黑板上,这些提纲反映了授课内容的重点、难点,并且有条理性,因而比较重要,故应记在笔记本上。

二、记问题

将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。

三、记疑点

对老师在课堂上讲的内容有疑问应及时记下,这类疑点,有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后与老师商榷。

四、记方法

勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。

五、记总结

注意记住老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找存在问题、找到规律,融会贯通课堂内容都很有作用

初三数学备考攻略

课程表:初三一年学习时间的整体安排

1.函数:函数这一章是初中代数的重点,也是难点,在中考的代数部分所占比重最大,综合题中离不开函数内容。所以从函数这一章的开始就要打好扎实的基础。

(1)在函数关系的三种表示方法中,图像法是个难点,它也是后面学习一次函数、二次函数图像的基础,同时也是中考考查的重点。

(2)在第一学期的函数学习过程中不宜大量做综合题,但应仔细体会利用函数图像解决简单实际问题的题目。近年中考比较侧重实际应用问题的考察。

(3)函数部分比较抽象,内容又多,所以我们应注意经常性的总结、归纳所学内容,不断梳理所学函数知识。

2.解直角三角形。

(1)特殊角的三角函数值必须要熟练掌握。避免死记硬背,要利用好图形,画一个特殊三角形,依据三边关系,很快看出各角的三角函数值。

(2)利用好互余关系,一定要区分好同名不同角比大小和同角不同名比大小两种情况。这是最易混淆的两个内容。

(3)如何利用本章知识来解决实际应用问题是我们在学习过程中遇到的难点。要学会利用图形来理解题目中的文字内容,从复杂的题目中提炼出所要考察的数学本质。

3.圆:这一章在初中几何教学中占重要地位,它属于“提高阶段”,也是难点。

(1)这一章的概念、定理繁多,很多地方如不注意会产生理解性的错误。所以,一定要注重概念、定理的细节。

(2)这一章的图形复杂,圆与三角形、四边形都可以结合在一起,但也有规律,在学习中要善于总结各种图形添加辅助线的方法、规律,总结常见基本图形。

(3)要经常梳理知识点,不但能做到温故知新,而且使头脑中对本章内容建立一个清晰的脉络。

4.第二学期总复习分三轮完成。

(1)第一轮复习的主要任务是整理初中三年所学内容,理清所有基本概念、基本方法。复习速度快。可以在老师归纳每一章节前,同学自己应先整理所学内容。在此期间,最好每天自测几个小题目,内容不要过难,就练基础,一定要坚持。

(2)第二轮复习将分类讲综合题。这是复习提高,训练运用所学知识解决综合问题的阶段,往往按数学思想分类讲解。有很多小题目能恰到好处的体现某种数学思想,我们不应忽视;不要放松基础,这个阶段的周测要注意按中考标准安排题目的易、中、难比例;对于做错的题目要弄清其错误原因,及时查漏补缺。

(3)第三轮复习指各种模拟题的综合训练。这个阶段切勿盲目做题、只练不改。要认真

对待每一次的试卷讲评。通过模拟训练,把中考所要考查的知识点和各部分内容所占分值、包括题目的分布情况,做到心中有数;针对题型的分布把做过的模拟试卷进行分析、整理,把每类题型都拿出来总结、寻找规律。这个阶段应是最大程度的提高阶段。

数学这门课连贯性很强,前面的知识没学会,后面的内容是建立在前面已有知识的基础之上的,而且函数和圆都是难点,所以这部分同学上课时会有很多地方听不懂,特别是复习课上老师讲到综合题时,这些同学更是不知所措。其实这部分同学心中也很苦闷 ,他们不是不想学,而是由于基础差不只如何是好。我想对这部分学生提几点建议。

1.要建立足够的信心。这时不要轻言放弃,因为我们还有约一年的时间,虽然难题我们做着有难度,但是基础题和一些中档题经过努力是可以掌握的。中考试卷中有60分的基础题,35分的中档题,这就是95分!一定坚信自己在中考中最低也能得到基础题的分值。

2.具体怎么做?第一,在第一轮基础复习阶段,要集中所有注意力,争取把基础概念和基本方法补上来,每天的基础测验要认真对待、弄清每道题的做法,认真自觉地改错,改错后一定再让老师批改,确认正确才可以。明确每天只要掌握一两道基础题的解法就是收获。平时主动与老师沟通,得到老师的帮助和理解。第二,反复训练。任何知识不可能只练一遍就掌握,必须反复不断练习,多次重复才能巩固。第三,正确看待每次考试的分数。经过努力有些同学的成绩可能还是不理想,但是我们一定要看清楚:在基础题的这部分份额中自己是否进步了

学好数学,多做题目是难免的。但桂文通称,做题在精不在多。孩子刚入初中,要从基础题入手,以课本上的习题为准,反复练习打好基础;再找一些课外习题,尤其是中档难度的题目,以帮助开拓思路,提高分析、解决问题的能力,掌握一般解题规律。

“只有一定量的练习,才能形成技能,也就是熟能生巧。”桂文通说,题目量拿捏不准就会弄巧成拙,变为“熟能生笨”、“熟能生厌”。他举例,经过多次重复机械做题,很多学生只会做某类题,稍稍改变一下命题方式,“题目穿了马甲,学生就不会了”。

做题的目的在于训练思维能力、掌握方法,所以家长应给孩子做一定量的题,有质量的题。桂文通建议,如果孩子学有余力,配备两本数学课外习题集足矣。

没有兴趣做支点数学很可能“扯后腿”

“小学到高中,学生要学12年数学,没有兴趣做支点,数学很可能在关键时刻‘扯后腿’。”谈到数学学习,桂文通建议家长把重心放在培养孩子的数学思维上,一味应试培优可能换来一时高分,但极易减弱孩子对数学的学习兴趣。

桂文通认为,学数学应融入到生活中,如天气预报中城市下雨的概率、股票的变化曲线以及买彩票中奖率,都运用到数学知识。

“孩子不一定每次考试都取得理想成绩”,桂文通提醒家长,不要给孩子下“没希望了”、“老是学不好”等负面定论,多用激励性语言,孩子的学习劲头才会越来越足。

消化好45分钟放电影式复习

“课堂45分钟如果完全消化,无须课外培优。”桂文通称,学生听课时,一方面要理解老师讲的内容;另一方面要独立思考,鉴别哪些知识已消化。讲课中,如果哪个环节没弄懂,应及时记录下来,课后请教。切勿因一个知识点不懂,影响整堂课的接受。

“复习数学的有效方法不是一遍遍看书和笔记,而是回忆式复习。”桂文通建议学生

采用放电影的方法。完成作业后,把书和笔记合上,回忆课堂上的内容,如定律、公式及例题解答思路、方法等,尽量完整的在大脑中重现。再打开课本及笔记进行对照,重点复习遗漏的知识点。这既巩固了当天上课内容,也可查漏补缺。

小小错题集受益无穷

平时作业、课外做题及考试中,对出错的数学题建立错题集很有必要。错题集由错题、错误原因、改正措施、订正和巩固防错五项内容组成。

一本小小的错题集,初中三年的数学学习都会受益无穷。桂文通称,错题集好处有三:由错题入手,对疏漏的知识点重新深刻理解;由果索因,把错误原因弄个水落石出,以便对症下药;提高改错的目的性和自觉性,长期坚持,可在学习态度、方法、习惯等方面有良好改观。

在现有基础上有所进步,就应给予鼓励和肯定。初一学生,尤其要重视基础题的训练,基础打牢,才有希望继续提高。此外,要关注孩子的计算能力,计算不过关,以后学习会很困难。初二数学对函数要求稍高,尤其是一次函数,是关键。学习一次函数要注意联系实际生活,把思维放开,才能有所突破。 现在新教材对几何要求比以前略低,重视图形的变动,学习时应将思维发散开来,不要太死板。多做习题很有必要,另外,做完习题后要总结归纳,找出弱点,然后才能有的放矢。建议初三学生多关注武昌区近两年的中考试题,因为武昌区较早使用新教材,试题有一定参考意义。

因篇幅问题不能全部显示,请点此查看更多更全内容